THE PERIODIC TABLE & PERIODIC LAW

Chapter 6

I. History

- A. Antoine Lavoisier (1790's): compiled a list of the elements known at the time; contained 23 elements
- B. Johann Dobereiner (German physicist, 1817): noted a relationship between the properties of certain elements and their atomic masses
 - 1. Arranged elements in groups of three by similar properties
 - 2. Found patterns when averaging atomic masses of elements in groups
 - 3. These groups of three are known as <u>Dobereiner's triads</u>

Triade 1	Triade 2	Triade 3	Triade 4	Triade 5
Li	Ca	S	CI	Mn
Na	Sr	Se	Br	Cr
К	Ва	Te	1	Fe

- C. John Newlands (English chemist, 1863): noted that there appeared to be a repetition of similar properties every eighth element. Newland's Arranged
 - 1. He then arranged the elements known at that time into seven groups of seven each
 - 2. Newlands referred to this arrangement as the <u>law of octaves</u>

CI/Ni Br Pd Pt/Ir CI Na K Cu Rb Ag Cs Ti Li Cd Ba / V Mg Zn Sr Pb G Ca AI Cr Y Ce/La U Bo Ta Th C Si Ti Zn Sn w in Hg Ds / Mo N P As Sb Mn Nb Bi S Ro /Ru 0 Fe Se Te Au Os

Newland's Arranged Elements in Octrave

3. Still, many elements did not fit this pattern...

- D. Dmitri Mendeleev (Russian chemist, 1869): 6 years after Newlands' proposal, Mendeleev suggested the elements properties did repeat periodically, but that the periods were of varying lengths based on atomic masses
 - He developed a "periodic table" based on increasing atomic mass across periods and repeating properties in groups or families
 - 2. Mendeleev left empty spaces in the table if no known element would fit the properties and atomic mass needed.
 - 3. There were certain irregularities in Mendeleev's table due to the fact that he ordered the elements by atomic mass (ex: tellurium, iodine)

Introduction to the Naming of Elements Ws la

'∛ame_	<u>SMCVS</u>	Date	Beil	_

Most elements have a two-letter symbol. The first letter is always $[\mathcal{P}_{i}^{(r)}\mathcal{P}_{i}^{(r)}]_{i=1}^{r}$ and the second is always LOWERT ASE

Evenents known for centuries were given one-letter symbols. Find all of the one letter symbols on the periodic table and iss will 14 hore: HTDROBEN (11), BORON (B), CARBON (C), NITRUBEN (N), CKTGEN (C), FLUDRING (F), PROSPHORUS (P), SULFUR (S), POTASSIUM (K), VANADIUM (V), -TTELLM (T), TOSINE (), TUNG STEN (W), UPANIUM (U)

Fach element has an atomic name which is a descriptive tille named after a person, place, or property. Use your periodic tables and deductive reasoning to complete the chart below.

Smills	Attomicit		
Sc	24	SCANDIUM	GCANDANIANIA
Ge	32	GER-MANNIN	<u> GERMANY</u>
Fr	81	FLANCIUM	FRANCE
	92	USANIUM	WANUS
Np	43	NEPTUNIUM	NEPTUNE
Hg	80	MERCURY	MERCULIPY
Pu	લય	PLUTONIUM	<u>i puulo</u>
Cí	48	CALIFORNIUM	<u>CAUTORNIA</u>
Ar	18	ARGON	· <u>· · · · · · · · · · · · · · · · · · </u>
Bk	91	BERKELIUM	BEAKELEY
Santari			
Cm	90	CUALUM	MARIE + PIERAE CURIE
Md	101	MENDELEVIUM	<u>DIVITEL MENDOULEUV</u>
Es	99	EINSTEINIUM	AUBORT EINSTEIN
No	107	NOBELIUM	ALTOLD NOBEL
smill	Home	sis e eleme incances.	
Rb	31	PUBICIUM	EURY LINES IN EMISSION SPECTA
 In	41	INCIUM	INDIGO LINEIN EMISSION SPECTA
Ra	. 88	LADIUM	PADICALIVE EMITS PAVIS
	·	·)

1

Worksheet 18

Many elements were discovered in the Renaissance and were given Latin names. Use your periodic table

complete the chart below.

diameter at		Latin Names	English Names
Symbol	Atomic #	t autrinames	- Inglight House
Na.	. 11	o <u>atoum</u>	<u></u>
ΙK	19	kalium	FOTASSIUM
Fe	26	ferrum	(<u>104)</u>
Cir .	29	സ്വസ്ത	COPPER
.Aa	47	argentum	<u></u>
Aq Sr	50	stamun	<u>יידי איז איז איז איז איז איז איז איז איז אי</u>
56	51	stibnum	<u> </u>
	74	woifram	TUNGSTEN
<u>M</u>	79	aurum	<u></u> GOUD
tig	80	hydrargeolum	MERCURY
E69	82	plumbum	EAO

Fit is the missing information using your periodic tables.

Nb	41	NICBIUM	⁵
. Mg	<u></u>	. magnesium	3
P.J	15	FHOSPHORUS	<u> </u>
N	28	NICHEL	4
, Min	.25	manganese	લ
હત	46	FALLIADUUM	5
Na	<u>۱۱</u>	SODIJIM	3
MÓ	42	melybičenum	<u>. 5</u>
69	<u>81</u>	ROLONIUM	Q
No	95 j	NEP TUNIUM	7
Md.	101	mondeley(0))	
P4 -	78	PLATINUM	(o

What pattern do you notice in the table chove? MOST ENO IN "TUMM"; UNEGER,

ATOMIC HIS ARE IN LOWER FOWS

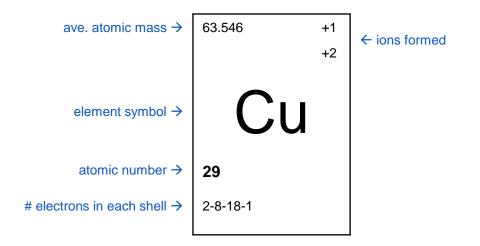
Element Names have some similar endings.

Most <u>metal</u> names and in the latter $1-{rac{1}{2}}{rac{1}{2}}{$

Nonnietal names follow these patterns:

H.O. Nend in C.F. N

T, Cl. Br, I, M. end in 🏌 🖪 È.


Net St. C. St. Ar, Kr. Xe, Rh and in C. N.

E. Modern Periodic Table

- Modern Periodic Law: similar properties of the elements occur periodically when arranged by their atomic **numbers** (not masses)
- 2. The arrangement of the periodic table is now based on how electrons fill various energy levels
- 3. Organization:
 - a. <u>Period</u>: horizontal row of elements by increasing atomic number; seven periods exist at this time (example: Period 1 is hydrogen to helium, Period 2 is lithium to neon)

- <u>b.</u> <u>Group</u>: vertical column of elements with similar properties; range from 1 - 18 and include the lanthanides (cerium – luthetium) & actinides (thorium – lawrencium)
 - i. International System: numbered 1-18
 - ii. American System (used in textbook): assigned a number (1-8) and a letter (A, B, C)
 - "A" group (1, 2, 13-18): usually called <u>representative elements</u>, possess wide range of chemical & physical properties
 - "B" group (3-12): called <u>transition elements/metals</u>
 - "C" groups: called <u>inner transition elements/metals</u> (lanthanides & actinides)

- 4. Element Notation
 - a. First letter capitalized, second lowercase
 - b. Always printed, never cursive
 - c. If an element has not been officially confirmed, it is represented with a temporary name & the symbol is three letters (example: Uut, Uup)
 - d. Example of element notation on your periodic table:

- Look at PT on p. 156-57
 - Copy Group #s (1A, 2A, 3B, etc...) onto your PT
 - In notes, copy entire PT from book; look at yours for info on #s 111-118
 - Color according to book PT (metals, metalloid, nonmetal, recently discovered)
 - #s 113-118 are recently discovered
 - Leave room at top to add family names next week

5. Classification of Elements

- a. <u>Metals</u>: generally hard & shiny, solid at room temperature, good conductors, malleable & ductile (Groups 1-12, lanthanides, actinides)
 - i. Metals tend to lose electrons
 - ii. 1/1A: alkali metals (+1) -- highly reactive
 - iii. 2/2A: alkaline earth metals (+2) -- reactive
 - iv. Lanthanides (+3) cerium to lutetium -- typical metal properties; most very rare in nature
 - Actinides (+3,+4) thorium to lawrencium -- typical metal properties, but are radioactive; rare/nonexistent in nature, as all >92 are manmade
 - vi. 3-12/B group: transition elements (variable charges) -- hard, brittle metals

- b. <u>Nonmetals</u>: generally gases or brittle solids, transparent or have dull surfaces, poor conductors
 - i. Nonmetals tend to gain electrons
 - ii. 13/3A: boron group (+3)
 - iii. 14/4A: carbon group (+2,+4)
 - iv. 15/5A: nitrogen group (-3)
 - v. 16/6A: oxygen group/chalcogens (-2)
 - vi. 17/7A: halogens (-1) -- highly reactive
 - vii. 18/8A: noble gases (0) -- nonreactive
 - viii. **NOTE: not all members of groups 13-17 are nonmetals; some are metalloids

- c. <u>Metalloids</u> are elements which sometimes act as metals and under different conditions act as nonmetals.
 - i. "Stairstep line" under boron separates the metals from the nonmetals; elements that border this line are metalloids (except aluminum)
- d. General rule:
 - i. Elements with three or less electrons in the outer level are metals
 - ii. Elements with five or more electrons in the outer level are nonmetals
 - iii. Metals lose electrons and nonmetals gain electrons

6. Notable Elements

- a. All elements beyond uranium except plutonium are not found in nature, we have made them.
- b. Francium is the most reactive metal and fluorine is the most reactive nonmetal.
- 7. The s-, p-, d-, and f-block Elements
 - a. The organization of the periodic table also reflects the electron configuration of the elements -- more on that next unit
- p. 158: 1-6

- Next week, I will give you an unknown metal sample and ask you to determine the identity
 - The metal will be either: one of the ones we worked with in lab (Mg, Ca, Al, Fe, Zn ,Cu), a member of Group 2, or a member of period 3 and 4
- Design a procedure that you could use to determine the identity of this unknown element – due Monday
 - You can use HCI, water, phenolphthalein, and flame tests
- Include step-by-step instructions, mLs of liquid being used, what various results of a test would indicate, etc. Basically go through a process of elimination. Example:
 - Step 1: identify color and luster of sample.
 - Step 2: Place the sample in 5 mL of HCl and observe the reaction. Gray bubbling and heat would indicate aluminum; a green solution and odor similar to that of tar indicates iron; _____ indicates _____.
 - Step 3: Place the metal in 5 mL of distilled water and phenolphthalein. If it turns pink, a reaction is occurring, which indicates a member of Group 2. If the reaction is less than that of calcium, it is most likely strontium or barium."

- Create an outline of a group of elements (assigned right): include background, isotopes, ions, properties representative elements, how they can be found in nature, and uses (pretty much anything in the book)
- Also include 3 multiple choice questions & one short answer/extended response question
- Write on a piece of paper & give to me by end of period – I'll put it all in a PowerPoint over the weekend, add anything I think is super important that you missed, & you'll "guest lecture" with me about your group next week!

Lab Group #	Group	
1	1/1A (p. 181-2)	
2	2/2A (p. 183-5)	
3	13/3A (p. 186-7)	
4	14/4A (p. 187-9)	
5	15/5A (p. 189-91)	
6	16/6A (p. 192-4)	
7	17/7A (p. 194-5)	
8	18/8A (p. 196)	

II. Properties of Groups

- A. Hydrogen: considered a group by itself
 - Isotopes: protium* (1 p+, 0 n⁰), deuterium (1 p+, 1 n⁰), tritium (1 p+, 2 n⁰)
 - 2. Has one outer electron, which accounts for its unique properties
 - 3. Can react in four ways:
 - a. Like a metal: lose an electron and become a positive hydrogen ion, H⁺
 - b. Share its single electron to form compounds (HCI, H_2O)
 - c. Gain an electron to form a hydride ion, H⁻
 - d. Form a bridge between two atoms
 - 4. Most abundant & lightest element in the known universe
 - 5. Usually occurs as a colorless odorless flammable gas (H₂)
 - 6. Uses: nuclear fusion (stars), fuel (furnaces, cars, stoves, buses, welding, etc.)

B. Alkali Metals: Group 1/1A

- 1. Characteristics:
 - a. +1 oxidation number & charge
 - b. Highly reactive, especially with water
 - c. Soft and silvery except cesium (yellow)
- 2. Representatives:
 - a. Lithium (Li): found in water, soil, and rocks; least reactive; used in batteries & dehumidifiers, as well as to treat bipolar disorder
 - Sodium (Na): with K, most abundant alkali metals; used in vapor lamps & nuclear reactors; necessary for life; ions are common in fluid surrounding cells; most common compound is NaCI (table salt, used for flavor & preserving food)
 - c. Potassium (K): with Na, most abundant alkali metals; more reactive & less used industrially; necessary for life; ions are common in cells; used in fertilizers; KCI is salt substitute; KNO₃ is used in fireworks

C. Alkaline Earth Metals: Group 2/2A

- 1. Characteristics:
 - a. +2 oxidation numbers & charges
 - b. Soft and silvery except strontium (yellow)
 - c. First three stable, last three form radioactive isotopes
- 2. Representatives:
 - a. Beryllium (Be): used in nuclear reactors & making non-sparking tools
 - b. Calcium (Ca): found widely in nature (CaCO₃); limestone, chalk, marble; antacid tablets, abrasives in toothpaste
 - Magnesium (Mg): malleable; contained in chlorophyll; ions contribute to human muscle function & metabolism; hard water; used in lightweight corrosion resistant alloys

D. Boron Group: 13/3A

- 1. Characteristics:
 - a. +3 oxidation numbers & charges
 - b. All soft metals except boron (yellow-brown powder)
 - c. All conduct electricity except boron
- 2. Representatives:
 - Boron (B): doesn't have much in common with group; used in producing borosilicate glass such as Pyrex and Kimax (heat and impact resistant)
 - b. Aluminum (AI): excellent conductor; extremely ductile and malleable; most abundant metal in the Earth's crust; used in corrosion resistant alloys, wiring, antiperspirants, & many ceramic materials; difficult to extract from ore, so recycle it!
 - c. Gallium (Ga): melts in your hand; used in thermometers; Gacontaining compounds used in semiconductor chips & lasers

E. Carbon Group: 14/4A

1. Characteristics:

- a. +2 or +4 oxidation number; carbon and silicon can have -4 as well
- b. First three elements form brittle solids; last two are soft and metallic
- c. Forms <u>allotropes</u>: different forms of an element with different structures & properties in the same state of matter

2. Representatives:

- a. Carbon (C): all living things are carbon based; millions of carbon compounds exist (study of them is called organic chemistry); minerals & ores containing carbonates, cyanides, etc. are part of inorganic chem; graphite is used in pencils and lubricants & diamonds used in jewelry and cutting/grinding tools
- Silicon (Si): second most plentiful element in the Earth's crust after oxygen; found in quartz, sand, and other silicates (a silicon atom bonded to four oxygen atoms); used in glass, transistors, computer chips, & synthetic motor oils
- c. Lead (Pb): used to be commonly used until people realized it was toxic; now used in storage batteries for cars

F. Nitrogen Group: 15/5A

- 1. Characteristics
 - a. Oxidation numbers range from -3 to +5, -3 being the most common
 - b. All are brittle solids except nitrogen (gas)
 - c. Compounds range from stable to highly unstable
- 2. Representatives:
 - a. Nitrogen (N): nitrogen gas, N₂, is extremely stable; other nitrogen compounds are highly unstable, such as trinitrotoluene (TNT) and dynamite; ammonia (NH₃) is a fertilizer & cleaning compound; nitric acid (HNO₃) is used in production of fertilizer & explosives
 - Phosphorus (P): DNA, RNA, ATP, ADP are biologically important compounds which contain phosphate groups; used in fertilizer & converted to phosphoric acid, H₃PO₄, for industrial purposes; phosphate runoff is environmentally harmful

G. Chalcogens: Group 16/6A

- 1. Characteristics
 - a. All have -2 oxidation number except polonium (+2, +4)
 - b. Oxygen is a gas; sulfur, selenium, & tellurium are brittle solids; polonium is radioactive
 - c. The first three have allotropic forms, the last two form metallic compounds

2. Representatives:

- a. Oxygen (O): most abundant element in the Earth's crust; very reactive; two basic forms: oxygen gas (O_2) which is necessary for combustion & respiration, and ozone (O_3) , a highly reactive compound which absorbs UV radiation
- b. Sulfur (S): sulfuric acid (H₂SO₄) is the most highly used substance in the USA & is produced in large quantities; used in fertilizer production, steel production, petroleum refining, and in production of paints & pigments; found in hydrothermal vents
- c. Selenium (Se): found in vitamins & foods to help prevent cell damage; converts light into electricity & is used in solar panels, semiconductors, & photocopiers

H. Halogens: Group 17/7A

- 1. Characteristics
 - a. -1 oxidation number & charge
 - b. Most reactive nonmetals
 - c. Can form compounds among themselves as well as with most other elements
 - d. Pose a threat to living organisms when in the pure form
 - e. Fluorine and chlorine are gases, bromine is a liquid, iodine is a solid, & astatine is radioactive
- 2. Representatives:
 - a. Fluorine (F): most reactive; compounds are used to help prevent tooth enamel from decay, & create nonstick coatings for cookware
 - b. Chlorine (CI): chlorides of many elements exist; used in manufacturing & food processing; common acid is HCI (found in your stomach); NaOCI is household bleach; chlorine gas (Cl₂) is deadly & often accidentally produced by mixing bleach and cleansers.
 - c. Iodine (I₂): used as a disinfectant; necessary in diet (iodized salt) to prevent thyroid condition called goiter

I. Noble Gases: Group 18/8A

- 1. Characteristics
 - a. Oxidation number is zero, do not tend to form compounds
 - b. All gases, radon is radioactive
 - c. Stable electron configurations
- 2. Representatives:
 - a. Helium (He): used in balloons, blimps, & airships, and to fill tubes in brightly colored signs along with neon, krypton, & xenon
 - b. Neon (Ne): used in light displays with other noble gases
 - c. Argon (Ar): used to fill light bulbs. Protects active metals during welding

J. Transition Metals: Groups 3-12 (3B-8B, 1B, 2B)

- 1. Characteristics
 - a. Variable oxidation numbers ranging from +1 to +8
 - b. Hard and brittle metals
 - c. High melting points
 - d. Principal structural metals (alone & as alloys)
 - e. Some exhibit <u>ferromagnetism</u>: strong attraction of a substance to a magnetic field
- 2. <u>Metallurgy</u>: branch of applied science that studies and designs methods for extracting metals and their compounds from ores
- 3. Representatives:
 - 1. Silver (Ag): tableware, jewelry, dental fillings (silver-mercury amalgam), mirrors
 - 2. Chromium (Cr): highly resistant to corrosion; used to make stainless steel
 - 3. lons of the transition metals are often responsible for the vivid colors found in liquids and solids (gemstones)
 - 4. All period 4 metal (except Sc & Ti) are necessary for living things

K. Lanthanides (part of Inner Transition Metals)

- 1. Characteristics
 - a. +3 oxidation numbers
 - b. Members have nearly identical properties
 - c. Most are very rare in nature
- 2. Representatives:
 - a. Neodymium (Nd): used in some alloys; neodymium oxide is used in glass filters & lasers
 - b. Lanthanide compounds are used in movie projectors, high-intensity searchlights, lasers, & tin ted sunglasses

L. Actinides (part of Inner Transition Metals)

- 1. Characteristics
 - a. Most have +3 or +4 oxidation numbers
 - b. Members have nearly identical properties
 - c. All are radioactive isotopes
 - d. Rare or nonexistent in nature, after atomic number 92 are man-made

2. Representatives:

- Curium (Cm): made by bombarding plutonium with neutrons; highly reactive, toxic, deadly; used as an energy source in nuclear generators in spacecraft
- b. Uranium (U): found in small amounts in nature; refined for use in nuclear reactors & atomic weapons
- c. Plutonium is used as fuel in nuclear power plants; Americium can be used in smoke detectors

III. Periodic Trends (Section 6-3)

- A. Certain characteristics of elements appear at regular intervals as atomic number increases; properties of elements are a result of the electron configuration
- B. <u>Diagonal Relationships</u>: when elements in one group are more closely related in properties to elements of another group in a diagonal pattern; most common in second and third periods (ex: Li-Mg, Be-AI, B-Si)

C. Atomic radii

- 1. Background: electrons are contained in specific energy levels
- 2. As you go down a group in the periodic table, there are more energy levels; therefore, the electron cloud is bigger, and the radii of the atoms are bigger
- As you go across a period the energy level remains the same, but protons are added; protons increase the attraction between (+) and (-) particles, so in general, this pulls the electrons closer – decreasing atomic radii.
- 4. **RULE:** atomic radii increases top to bottom and decreases left to right (see p. 163)

D. Radii of lons

- 1. The radii of ions may be greater than or less than the radii of stable atoms
- 2. The ionic radii of nonmetals tend to be larger since they gain electrons and less for metals which lose electrons (see p. 166)
- 3. All atoms try to achieve noble gas configurations
 - a. Example:
 - i. Na \rightarrow Na⁺ (Ne)
 - ii. $CI \rightarrow CI^{-}(Ar)$
 - iii. Example: bonding NaCl
 - $Na \rightarrow e \rightarrow Cl$

Sodium loses an electron to get to Ne's configuration; CI gains that same electron to get to Ar's configuration

4. **RULE:** Ionic radii decrease left to right and then suddenly increase, and then decrease again

- E. <u>Ionization energy</u>: energy necessary to completely remove an electron from an atom of the element being bombarded, leaving a positive ion (kJ/mol)
 - 1. <u>First ionization energy</u>: energy needed to remove the most loosely held electron in an atom.
 - 2. RULE: Ionization energies increase across rows and decrease down columns (see p. 167)
 - 3. Exceptions:
 - a. $Be \rightarrow B$ decrease
 - b. $N \rightarrow O$ decrease

- 4. <u>Multiple ionization energies</u>: second, third, fourth and other higher ionization energies exist, which measure the energy needed to remove additional electrons
- 5. This energy increases dramatically with each additional electron removed (see p. 168)
- F. <u>Electronegativity</u>: relative tendency of an atom to attract shared electrons to itself when bound with another atom
 - The most active metals (lower left) have the lowest electronegativities, the most active nonmetals (upper right) have the highest electronegativities (see p. 169)
 - 2. Generally decreases as you move down a group & increases as you move across a period